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Abstract

The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomo-

geneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezo-

electric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz�s symmetry principle

integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this

paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are

derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and

electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using

the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity

can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the

influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches

extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.
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1. Introduction

Due to this intrinsic coupling behavior, piezoelectric materials are used widely in modern technology

such as high power sonar transducers, electro-mechanical actuator, piezoelectric power supplies and micro-
positioner. These devices are designed to work under combined electro-mechanical loads. The presence of

various defects, such as dislocations, cracks and inclusions, can greatly influence their characteristics and

coupled behavior. Therefore, it is of vital importance to study the electro-elastic fields as a result of the

presence of defects and inhomogeneities in these quasi-brittle solids.

Piezoelectric composites have become an important branch of modern engineering materials with

fast development of the intelligent materials and structures. A number of contributions had been con-

ducted on electro-elastic coupling characteristics of piezoelectric composite materials. Pak (1992) studied
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the anti-plane problem of a piezoelectric circular inclusion. Meggiud and Zhong (1997) provided a general

solution for the elliptical inhomogeneity problem in piezoelectric material under anti-plane shear and in-

plane electric field. Kattis et al. (1998) investigated the electro-elastic interaction effects of a piezoelectric

screw dislocation with circular inclusion in piezoelectric material. Meguid and Deng (1998) and Deng and
Meguid (1999) considered the interaction between the piezoelectric elliptical inhomogeneity and a screw

dislocation located inside inhomogeneity and outside inhomogeneity respectively under anti-plane shear

and in-plane electric field. Recently, Huang and Kuang (2001) evaluated the generalized electro-mechanical

force when dislocation located inside, outside and on the interface of elliptical inhomogeneity in a infinite

piezoelectric media.

Above investigations and analysis all based on perfect interface between matrix and inclusion. Interfacial

defects, typically interfacial cracks and interfacial rigid lines, can be produced inevitably in manufacturing

and using of composite materials. Therefore, investigation on interaction of piezoelectric dislocation and
inhomogeneity containing interfacial defects has important practical values which cannot only help to

understand coupled electro-elastic characteristics of piezoelectric materials, but also offer scientific basis for

the establishment of intelligent composites interface fracture criterion. The interaction of a screw dislo-

cation and a thin film-covered crack in order to investigate the effects of a passive film on stress-corrosion

cracking had been studied by Zhang and Qian (1996). Zhong and Meggiud (1997) studied the partially

debonded circular inhomogeneity problem in piezoelectric materials under anti-plane shear and in-plane

electric field. Lee et al. (2000) obtained the general solutions for a piezoelectric screw dislocation interacting

with a semi-infinite crack. Detailed review of recent developments in fracture mechanics of piezoelectric
materials can be found in the review paper by Zhang et al. (2001).

In this article, the electro-elastic interaction between a piezoelectric screw dislocation and circular in-

homogeneity interfacial rigid lines under combined longitudinal shear and in-plane electric field is dealt

with. Using Riemann–Schwarz�s symmetry principle (Toya, 1974) integrated with the analysis singularity of

complex functions (Liu, 1991), we present the general elastic solution of this problem and the closed form

solution for interface containing a single rigid line inclusion. The holomorphic expressions of electro-elastic

fields in matrix and inhomogeneity regions and image force are derived explicitly, and the influence of rigid

line inclusion upon force acting on dislocation is discussed and shown graphically. Results presented in this
paper contain the previous known solutions as special cases.
2. Basic formulation and problem statement

Assuming that the transversely isotropic piezoelectric media which has been poled along the z-direction
with an isotropic xoy-plane, is subjected to remote longitudinal shear and in-plane electric field, then only

coupled out-of-plane displacement and in-plane electric field need be considered so that there are only non-

trivial displacement w, strains cxz and cyz, stresses sxz and syz, electric potential u, electrical field components

Ex and Ey , electric displacement components Dx and Dy in the Cartesian coordinates. All components are

only functions of variables of x and y. The mechanical and electric coupled constitutive equations (Tiersten
(1969)) can be expressed as:
sxz ¼ C44

ow
ox

þ e15
ou
ox

syz ¼ C44

ow
oy

þ e15
ou
oy

ð1Þ

Dx ¼ e15
ow
ox

� d11
ou
ox

Dy ¼ e15
ow
oy

� d11
ou
oy

ð2Þ
where C44 is the longitudinal shear modulus at a constant electric field, e15 is the piezoelectric modulus, d11 is
the dielectric modulus at a constant stress field.
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The equilibrium equation and charge equation can be reduced to the harmonic equations
r2w ¼ 0 r2u ¼ 0 ð3Þ
where r2 ¼ o2=ox2 þ o2=oy2 is Laplace operator.

Referring to the work by Jiang et al. (2001), we introduce the vector of generalized displacement

U ¼ w
u

� �
. Substituting it into Eq. (3), we obtain
r2U ¼ 0 ð4Þ
We introduce the vectors of generalized stress and strain.
Rx ¼
sxz
Dx

� �
Ry ¼

syz
Dy

� �
ð5Þ

Yx ¼
cxz
�Ex

� �
Yy ¼

cyz
�Ey

� �
ð6Þ
By adopting the above notations, Eqs. (1) and (2) can be unified into
Rx ¼ MYx Ry ¼ MYy ð7Þ
where
M ¼ C44 e15
e15 �d11

� �
can be called the electro-elasticity modulus matrix.

Eq. (4) shows that the general solution of the generalized displacement vector U can be expressed by a

generalized analytical function vector fðzÞ, where z ¼ xþ iy is the complex variable.
U ¼ Re fðzÞ ð8Þ
where Re denotes the real part, and
fðzÞ ¼ fwðzÞ
fuðzÞ

� �
ð9Þ
fwðzÞ and fuðzÞ are conventional analytical functions. By using the complex potential vector, the constitu-

tive Eq. (7) can be expressed as
Rx � iRy ¼ MFðzÞ ð10Þ
where FðzÞ ¼ f 0ðzÞ and the superscript prime denotes derivative with respect to z. In term of polar coor-

dinates r and q, Eq. (10) can be expressed as
Rr � iRq ¼ eiqMFðzÞ ð11Þ
The problem to consider is as follows. Referring to Fig. 1, let piezoelectric medium I with electro-

elasticity modulus M1 occupy the region Sþ, interior to the circle of radius R, while piezoelectric medium II
with electro-elasticity modulus M2 occupy region S�, exterior the circle. A piezoelectric screw dislocation

b ¼ fbz; bugT is located at arbitrary point z0 inside region S� (or region Sþ). Longitudinal shear stresses s1xz



Fig. 1. Interaction of piezoelectric screw dislocation and circular interfacial rigid lines model.
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and s1yz as well as electric displacements D1
x and D1

y are applied at infinite. A series of electrically con-
ducting interfacial curvilinear rigid lines lie along a part L of the interface between two materials, where L is

a union of rigid line segments Lj with the end points aj and bj ðj ¼ 1; 2; . . . ; nÞ. L0 is the remainder of the

interface which the inhomogeneity and the matrix are perfectly bonded.

Let the center of circle be placed at the origin of complex plane z ¼ xþ iy and t ¼ Reiq be those points of
z on jzj ¼ R. The boundary conditions of generalized displacements and radial generalized stresses for the

above problem can be expressed as follows:
Uþ
1 ðtÞ ¼ U�

2 ðtÞ ¼
dj

uj

� �
t 2 lj ðj ¼ 1; 2; . . . ; nÞ ð12Þ
where dj is constant denoting a small anti-plane displacement of any rigid line lj, uj is the electric potential
on lj.
Rþ
r1ðtÞ ¼ R�

r2ðtÞ t 2 L0 ð13Þ

Uþ
1 ðtÞ ¼ U�

2 ðtÞ t 2 L0 ð14Þ

After taking the derivatives with respect to q, the addition and subtraction of Eq. (12) yield
U0þ
1 ðtÞ þU0�

2 ðtÞ ¼ 0 t 2 L ð15Þ

U0þ
1 ðtÞ �U0�

2 ðtÞ ¼ 0 t 2 L ð16Þ

where the subscripts 1 and 2 denote the quantities defined in the region Sþ and S�, with the superscripts +
and ) used to denoting the boundary values of the physical quantities as they approached from Sþ and S�,

respectively.

In addition to determine the unknown coefficients in the solution for such a problem, the equilibrium

condition of each rigid line must be considered. Assuming that rigid lines are external traction and charge

free, we have
Z bj

aj

Rþ
r1ðtÞ

dt
t
�
Z bj

aj

R�
r2ðtÞ

dt
t
¼ 0 j ¼ 1; 2; . . . ; n ð17Þ
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3. General solution of problem

3.1. A piezoelectric screw dislocation in matrix

3.1.1. General solution

Assuming that a piezoelectric screw dislocation is located in region S� and considering Eq. (8), it is easy

to obtain:
U2 ¼ Re f2ðzÞ ð18Þ

Referring to the work by Pak (1990) and Jiang et al. (2001), the generalized analytical function vector

F2ðzÞ in region S� under considerations can be written as
F2ðzÞ ¼
1

2pi
b

1

z� z0
þ C þ F20ðzÞ z 2 S� ð19Þ� �
where F20ðzÞ is holomorphic in region S�, b ¼ bz
bu

is piezoelectric screw dislocation vector, C is deter-

mined from the far-field loads.
C ¼ M�1
2 ðR1

x � iR1
y Þ ¼ M�1

2

s1xz � is1yz
D1

x � iD1
y

� �
ð20Þ
where
M2 ¼
Cð2Þ

44 eð2Þ15

eð2Þ15 �dð2Þ
11

" #
superscript )1 denotes the inverse of a matrix.

Applying Riemann–Schwarz�s symmetry principle and noting t�tt ¼ R2 on jzj ¼ R, we extend the definition

of the holomorphic function F2ðzÞ into region Sþ lying along L by substitution
F2ðzÞ ¼
R2

z2
F2

R2

z

� 	
z 2 Sþ ð21Þ
F2ðzÞ is holomorphic in region Sþ, except at the points z ¼ R2=z0 and z ¼ 0 where it is singular. Using Eqs.

(19) and (21), F2ðzÞ can be expressed as
F2ðzÞ ¼
1

2pi
b

1

z� z0

�
þ 1

z� z

� 1

z

	
þ C þ R2

z2
C þ F20ðzÞ ð22Þ
where z
 ¼ R2=�zz0 and F20ðzÞ is holomorphic over the entire plane cut along with L0.

F1ðzÞ is holomorphic in region Sþ and has form
F1ðzÞ ¼ Dþ F10ðzÞ ð23Þ

where D is a constant vector to be determined and F10ðzÞ ¼ Oð1=zÞ near z ¼ 0.

Similarly, extending function F1ðzÞ from Sþ to S�, for large value of jzj, we obtain
F1ðzÞ ¼
R2

z2
DþO

1

z3

� 	
ð24Þ
From Eqs. (14) and (16), it is seen that
U0þ
1 ðtÞ ¼ U0�

2 ðtÞ t 2 Lþ L0 ð25Þ

at every point of entire circular boundary. After taking derivatives with respect to h, and considering Eq. (8),

the generalized displacement continuity condition (25) is written as
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½F1ðtÞ þ F2ðtÞ�þ ¼ ½F1ðtÞ þ F2ðtÞ�� t 2 Lþ L0 ð26Þ
Noting Eqs. (19), (22), (23) and (24) and according to the generalized Liouville�s theorem, Eq. (26)

leads to
F1ðzÞ þ F2ðzÞ ¼
1

2pi
bGðzÞ þ C

�
þ R2

z2
C

	
ð27Þ
with
GðzÞ ¼ 1

z� z0

�
þ 1

z� z

� 1

z

	

Substituting Eq. (11) into Eq. (13), we obtain
M1½Fþ
1 ðtÞ þ F�

1 ðtÞ� ¼ M2½Fþ
2 ðtÞ þ F�

2 ðtÞ� t 2 L0 ð28Þ
Inserting Eq. (27) into Eq. (28), we have
Fþ
1 ðtÞ þ F�

1 ðtÞ ¼ N1GðtÞ þ 2ðM1 þM2Þ�1M2 C

�
þ R2

t2
C

	
t 2 L0 ð29Þ
with N1 ¼ ð1=piÞðM1 þM2Þ�1M2b.

According to Muskhelishvili (1975), the general solution of Eq. (29) can be written as
F1ðzÞ ¼
X0ðzÞ
2pi

Z
L

hðtÞ
Xþ
0 ðtÞðt � zÞ dt þ X0ðzÞPnðzÞ ð30Þ
where hðtÞ ¼ N1GðtÞ þ 2ðM1 þM2Þ�1M2 C þ R2

t2 C

 �
PnðzÞ ¼
Pn

j¼1 C
ðwÞ
j zn�j

Pn
j¼1 C

ðuÞ
j zn�j

2
4

3
5

X0ðzÞ ¼
Yn
j¼1

ðz� ajÞ�1=2ðz� bjÞ�1=2

ð31Þ
X0ðzÞ is a single-valued branch in the plane cut along with L0 and for which
lim
jzj!1

znX0ðzÞ ¼ 1 ð32Þ
After evaluating the Cauchy integral in Eq. (30), we obtain
F1ðzÞ ¼ X0ðzÞ PnðzÞ
�

� 1

2
½h0ðzÞ þ h1ðzÞ þ hz0ðzÞ þ hz
 ðzÞ�

�
þ 1

2
hðzÞ ð33Þ
where h0ðzÞ; h1ðzÞ; hz0ðzÞ and hz
 ðzÞ represent the principal parts at the points z ¼ 0, z ¼ 1, z ¼ z0 and z ¼ z


of function hðzÞ=X0ðzÞ, respectively.
The remaining integration constants in Eq. (30) are determined from the equilibrium conditions (17) of

the rigid lines. Noting Eq. (11), we obtain 2n closed contour integrals
Z
^j

½M1F1ðzÞ þM2F2ðzÞ�dz ¼ 0 j ¼ 1; 2; . . . ; n ð34Þ
where ^j is a closed contour encircling each rigid line Lj with the poles ðz ¼ 0; z0; z
Þ outside contour.
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Considering Eq. (27), Eq. (34) can be expressed as follows
Z
^j

ðM1

�
�M2ÞF1ðzÞ þ

1

2pi
M2bGðzÞ þM2 C

�
þ R2

z2
C

	�
dz ¼ 0 j ¼ 1; 2; . . . ; n ð35Þ
This is a system of 2n linear algebraic equations solving for the unknown constants. Substituting Eq. (33)

into Eq. (35), the remaining integration constants can be determined. Once F1ðzÞ is available, F2ðzÞ will be
simply obtained from Eq. (27).

3.1.2. Typical solution

As a typical case, we consider the problem of interface containing single rigid line. Further more, let us

consider the case of the rigid line symmetrically placed with respected to the x-axis which ends are located at

a ¼ Re�ih and b ¼ Reih on jzj ¼ R as shown in Fig. 2.

In this case, PnðzÞ and X0ðzÞ have form
P1ðzÞ ¼ CðwÞ
1 CðuÞ

1

� �T ð36Þ

X0ðzÞ ¼ ðz� aÞ�1=2ðz� bÞ�1=2 ð37Þ

Expanding 1=X0ðzÞ into Laurent series in the vicinity of z ¼ 0 and jzj ¼ 1, and noting X0ð0Þ ¼ ð1=RÞ, we
obtain
h0ðzÞ ¼ �R
z
N1 þ 2ðM2 þM1Þ�1M2

�
� R2

z
cos hC þ R3

z2
C

	
ð38Þ

h1ðzÞ ¼ N1 þ 2ðM2 þM1Þ�1M2ðCz� CR cos hÞ ð39Þ

hz0ðzÞ ¼ N1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

ð40Þ

hz
 ðzÞ ¼ N1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


ð41Þ
Fig. 2. Interface containing single rigid line.
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Substituting Eqs. (38)–(41) into Eq. (33), and applying the residue theorem, the unknown coefficient can

be calculated:
CðwÞ
1

CðuÞ
1

" #
¼ 0

0

� �
ð42Þ
Substituting Eqs. (38)–(41) into Eq. (33), and considering Eq. (42), the general solution of F1ðzÞ can be

written as
F1ðzÞ ¼ ðM1 þM2Þ�1M2 C

�
þ R2

t2
C

	
þ ðM2 þM1Þ�1M2

R2

z
cos hC

�
� R3

z2
C � Czþ CR cos h

	

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p þ 1

2pi
ðM1 þM2Þ�1M2b

1

z� z0

�
þ 1

z� z

� 1

z

	
� 1

2pi
ðM1 þM2Þ�1M2b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


� R
z
þ 1

!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð43Þ
The function F2ðzÞ can be found by substituting Eq. (33) into Eq. (27), it is
F2ðzÞ ¼ ðM1 þM2Þ�1M1 C

�
� R2

t2
C

	
� ðM2 þM1Þ�1M2

R2

z
cos hC

�
� R3

z2
C � Czþ CR cos h

	

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p þ 1

2pi
ðM1 þM2Þ�1M1b

1

z� z0

�
þ 1

z� z

� 1

z

	
þ 1

2pi
ðM1 þM2Þ�1M2b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


� R
z
þ 1

!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð44Þ
The solution to the problem of corresponding homogeneous material containing single circular-arc rigid

line is the special case as M1 ¼ M2, which is
FðzÞ ¼ 1

2
C

�
þ R2

t2
C

	
� 1

2

R2

z
cos hC

�
� R3

z2
C � Czþ CR cos h

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p

þ 1

4pi
b

1

z� z0

�
þ 1

z� z

� 1

z

	
þ 1

4pi
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


� R
z
þ 1

!

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p ð45Þ
This is a new solution.
Assuming h ¼ 0 and C ¼ 0, namely, radian of interfacial rigid line and generalized stresses at infinite are

equal to zero; we obtain the solutions on interaction between a piezoelectric screw dislocation and circular

inhomogeneity.
F1ðzÞ ¼
1

pi
ðM1 þM2Þ�1M2b

1

z� z0
ð46Þ
F2ðzÞ ¼
1

2pi
b

1

z� z0
þ 1

2pi
ðM1 þM2Þ�1ðM1 �M2Þb

1

z� z


�
� 1

z

	
ð47Þ
which are identical to the results in Kattis et al. (1998) and Liu et al. (2000).
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3.2. A piezoelectric screw dislocation inside the inhomogeneity

Assuming a screw dislocation is located inside inhomogeneity and vanishes at infinite, by the application

of analysis of singularity of FðzÞ, the complex potential in inhomogeneity region can be expressed as
F1ðzÞ ¼
1

2pi
b

1

z� z0
þ F10ðzÞ z 2 Sþ ð48Þ
where F10ðzÞ is a holomorphic complex function in region Sþ.

The complex potential outside inhomogeneity is holomorpic and takes the following form for large value

of jzj.
F2ðzÞ ¼
1

2pi
b
1

z
þO

1

z2

� 	
z 2 S� ð49Þ
Assuming interface containing single rigid line inclusion, furthermore, let the center of arc L lie on the

positive x-axis and the central angle subtended by arc L be 2h, using the same method introducing in Section
3.1, the complex potentials inside inhomogeneity and matrix can be expressed as follows:
F1ðzÞ ¼
1

2pi
ðM1 þM2Þ�1M2b

1

z� z0

�
þ 1

z� z

� 1

z

	
þ 1

2pi
ðM1 þM2Þ�1M1b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p þ 1

2pi
ðM1 þM2Þ�1M2b

� R
z

�
� 1

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð50Þ

F2ðzÞ ¼
1

2pi
ðM1 þM2Þ�1M1b

1

z� z0

�
þ 1

z� z

� 1

z

	
� 1

2pi
ðM1 þM2Þ�1M1b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p � 1

2pi
ðM1 þM2Þ�1M2b

� R
z

�
� 1

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð51Þ
Assuming the radian of rigid line h is equal to zero and the piezoelectric coupling effect is absent, Eqs.

(45) and (46) reduce to
F1ðzÞ ¼
G1bz
2pi

1

z� z0
þ G1ðG2 � G1Þbz

2piðG1 þ G2Þ
1

z� z

ð52Þ

F2ðzÞ ¼
G2ðG2 � G1Þbz
2piðG1 þ G2Þ

1

z
þ G1G2bz

piðG1 þ G2Þ
1

z� z0
ð53Þ
Eqs. (52) and (53) agree with the results of Smith (1968).
4. Stresses and electric displacements

Substituting Eqs. (43) and (44) into Eq. (10) respectively, stress fields and electric displacement fields in

inhomogeneity and matrix can be evaluated.
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Rx1 � iRy1 ¼M1ðM1 þM2Þ�1M2 C

�
þR2

z2
C

	
þM1ðM2 þM1Þ�1M2

R2

z
coshC

�
�R3

z2
C� Czþ CR cosh

	

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p þ 1

2pi
M1ðM1 þM2Þ�1M2b

1

z� z0

�
þ 1

z� z

� 1

z

	
� 1

2pi
M1ðM1 þM2Þ�1M2b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


�R
z
þ 1

!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð54Þ
Rx2 � iRy2 ¼M2ðM1 þM2Þ�1M1 C

�
þR2

z2
C

	
�M2ðM2 þM1Þ�1M2

R2

z
coshC

�
�R3

z2
C� Czþ CR cosh

	

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p þ 1

2pi
M2ðM1 þM2Þ�1M1b

1

z� z0

�
þ 1

z� z

� 1

z

	
þ 1

2pi
M2ðM1 þM2Þ�1M2b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


�R
z
þ 1

!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð55Þ
When the dislocation is located inside the inhomogeneity, substituting Eqs. (50) and (51) into Eq. (10), we

have
Rx1 � iRy1 ¼
1

2pi
M1ðM1 þM2Þ�1M2b

1

z� z0

�
þ 1

z� z

� 1

z

	

þ 1

2pi
M1ðM1 þM2Þ�1M1b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p

þ 1

2pi
M1ðM1 þM2Þ�1M2b

R
z

�
� 1

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð56Þ
Rx2 � iRy2 ¼
1

2pi
M2ðM1 þM2Þ�1M1b

1

z� z0

�
þ 1

z� z

� 1

z

	

� 1

2pi
M2ðM1 þM2Þ�1M1b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p
z� z0

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z� z


!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p

� 1

2pi
M2ðM1 þM2Þ�1M2b

R
z

�
� 1

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p ð57Þ
5. Image force

5.1. Perturbation stress and electric displacement at the dislocation

The perturbation stress and electric displacement components at the dislocation are obtained by sub-

tracting those attribution to the dislocation in the corresponding infinite homogeneous medium from
Eq. (55) or (56), then taking the limit for z approaches to z0.
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(1) Dislocation inside matrix
R0
x2 � iR0

y2 ¼ M2ðM1 þM2Þ�1M1 C

�
þ R2

z20
C

	
�M2ðM2 þM1Þ�1M2

R2

z
coshC

�
� R3

z2
C� Czþ CR cosh

	

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p þ 1

2pi
M2ðM1 þM2Þ�1M1b

1

z0 � z


�
� 1

z0

	

þ 1

2pi
M2ðM1 þM2Þ�1M2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z0 � z


 
� R
z0
þ 1

!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� aÞðz� bÞ
p

� 1

4pi
M2ðM1 þM2Þ�1M2b

1

z0 � a

�
þ 1

z0 � b

	
ð58Þ
(2) Dislocation inside inhomogeneity
R0
x1 � iR0

y1 ¼
1

2pi
M1ðM1 þM2Þ�1M2b

1

z0 � z


�
� 1

z0

	
þ 1

2pi
M1ðM1 þM2Þ�1M1b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z0 � z


 !

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p þ 1

2pi
M1ðM1 þM2Þ�1M2b

R
z0

�
� 1

	

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p � 1

4pi
M1ðM1 þM2Þ�1M1b

1

z0 � a

�
þ 1

z0 � b

	
ð59Þ
5.2. Image force

Image force (Hirth and Lothe, 1982) on the dislocation is a significant physical quantum for under-

standing interacting mechanism in studying the interaction effects of piezoelectric dislocation and inhomo-

geneity. The image force can be obtained by using the generalized Peach–Keohler formula by Pak (1990)

as follow
Fx � iFy ¼ ibT R0
xk



� iR0

yk

�
ðk ¼ 1; 2Þ ð60Þ
Substituting Eq. (58) or (59) into Eq. (60), image force components Fx and Fy can be determined.

(1) Dislocation inside matrix at arbitrary point z0.
Fx � iFy ¼ ibTM2ðM1 þM2Þ�1M1 C

�
þ R2

z20
C

	
� ibTM2ðM2 þM1Þ�1M2

� R2

z
cos hC

�
� R3

z2
C � Czþ CR cos h

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz0 � aÞðz0 � bÞ
p þ bTM2ðM1 þM2Þ�1M1b

1

2p

� 1

z0 � z


�
� 1

z0

	
þ bTM2ðM1 þM2Þ�1M2b

1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z0 � z


 
� R
z0
þ 1

!

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p � bTM2ðM1 þM2Þ�1M2b
1

4p
1

z0 � a

�
þ 1

z0 � b

	
ð61Þ
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(2) Dislocation inside inhomogeneity at arbitrary point z0.
Fx � iFy ¼ bTM1ðM1 þM2Þ�1M2b
1

2p
1

z0 � z


�
� 1

z0

	
þ bTM1ðM1 þM2Þ�1M1b

1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz
 � aÞðz
 � bÞ

p
z0 � z


 !

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p þ bTM1ðM1 þM2Þ�1M2b
1

2p
R
z0

�
� 1

	

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � aÞðz0 � bÞ

p � bTM1ðM1 þM2Þ�1M1b
1

4p
1

z0 � a

�
þ 1

z0 � b

	
ð62Þ
When h ¼ 0 and C ¼ 0, the corresponding image force between piezoelectric screw dislocation and
circular elastic inhomogeneity is obtained from Eq. (61) which coincides with the result of Liu et al. (2000).

When dislocation lies on x-axis and generalized loads vanish at infinite, z0 ¼ x0, C ¼ 0, expressions (61)

and (62) reduce to

(1) Dislocation inside matrix
Fx ¼ bTM2ðM1 þM2Þ�1M1b
1

2p
x0

x20 � R2

�
� 1

x0

	
þ bTM2ðM1 þM2Þ�1M2b

� 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � x0aÞðR2 � x0bÞ

p
x20 � R2

 
� R
x0

þ 1

!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 � aÞðx0 � bÞ
p � bTM2ðM1 þM2Þ�1M2b

� 1

4p
1

x0 � a

�
þ 1

x0 � b

	
ð63Þ
Fy

Fy
¼ 0 ð64Þ
(2) Dislocation inside inhomogeneity
Fx ¼ bTM1ðM1 þM2Þ�1M2b
1

2p
x0

x20 � R2

�
� 1

x0

	
þ bTM1ðM1 þM2Þ�1M1b

1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � x0aÞðR2 � x0bÞ

p
x20 � R2

 !

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � aÞðx0 � bÞ

p þ bTM1ðM1 þM2Þ�1M2b
1

2p
R
x0

�
� 1

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 � aÞðx0 � bÞ
p

� bTM1ðM1 þM2Þ�1M1b
1

4p
1

x0 � a

�
þ 1

x0 � b

	
ð65Þ
¼ 0 ð66Þ

Above Eqs. (63)–(66) indicate image force component Fy equals to zero and the dislocation only moves

along x-axis when dislocation lies on x-axis.
6. Numerical analysis and discussion

From Eqs. (61) and (62), we can discuss the influence of all parameters upon image force. For the

convenience of comparing with previous known solutions, we analyze the special case when dislocation lies
on x-axis in the absence of remote generalized loads. Assuming the piezoelectric screw dislocation vector

(Lee et al., 2000)
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b ¼ bz
bu

� �
¼ 1:0� 10�9 m

1:0 V

� �
and using Eqs. (63) and (65), the influence of circular interfacial crack upon image force is discussed as

follows.

(1) Dislocation in matrix

Let us define the normalized force on dislocation as Fxo1 ¼ ð2pR=Cð2Þ
44 b

2
z ÞFx. Assuming matrix material is

PZT-5H piezoelectric ceramics with the electro-elastic properties:
M2 ¼ 3:53� 1010 N=m2 17 C=m2

17 C=m2 1:51� 10�8 C=Vm

� �
and dielectric modulus dð1Þ
11 ¼ dð2Þ

11 .

Let us introduce a1 ¼ Cð1Þ
44 =C

ð2Þ
44 , b1 ¼ eð1Þ15 =e

ð2Þ
15 and k1 ¼ R=x0. The normalized force Fxo1 on dislocation

versus h is depicted in Fig. 3 with different b1 for a1 ¼ 1 and k1 ¼ 0:8. It is seen that image force is equal to

zero in homogeneous piezoelectric material as h ¼ 0 and b1 ¼ 1. Fxo1 is always positive as b1 > 1, for which

the piezoelectric inhomogeneity repel dislocation located inside matrix. For b1 < 1, Fxo1 is negative first, and
then becomes positive. The image force will increase with the increase of rigid line angle h which indicates
interfacial rigid line repel piezoelectric screw dislocation. The variation of the normalized force Fxo1 acting
on dislocation with radian h is plotted in Fig. 4 with different a for b1 ¼ 2 and k1 ¼ 0:8. Noticeable, Fxo1 is
positive as h ¼ 0 and a1 ¼ 0:1, 0.8 which shows soft inhomogeneity can repel dislocation in piezoelectric

materials due to their different piezoelectric constants ratio. To our knowledge, soft inhomogeneity will

attract dislocation inside matrix all along in non-piezoelectric composites. It is also shown that Fxo1 will

increase with the increase of rigid line radian for which rigid line always repel dislocation. In Fig. 5, we

illustrate variation of normalized force Fxo1 versus k1 with different value of b1 for a1 ¼ 1 and 2h ¼ 20�. It is
seen that the normalized force Fxo1 is always positive as b1 > 1. For b1 < 1, circular piezoelectric inho-
mogeneity and rigid line inclusion attract dislocation first, and then repel it. There is a stable equilibrium

position in x-axis and the image force equal to zero at that point. In spite of getting any value of b1, the

magnitude of repulsion force on dislocation will be a large value when dislocation approaches to inho-

mogeneity (k1 ! 1) from infinity along with x-axis. The variation of the normalized force Fxo1 with k1 is

plotted in Fig. 6 with different a1 for 2h ¼ 20� and b1 ¼ 1. It is seen that Fxo1 is always positive when a1 > 1

(hard inhomogeneity), for which hard inhomogeneity and rigid line inclusion always repel dislocation
Fig. 3. Normalized force Fxo1 versus h with different b1 for a1 ¼ 1 and k1 ¼ 0:8.



Fig. 5. Normalized force Fxo1 versus k1 with different b1 for a1 ¼ 1 and h ¼ 10�.
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Fig. 6. Normalized force Fxo1 versus k1 with different a1 for b1 ¼ 1 and h ¼ 10�.

Fig. 4. Normalized force Fxo1 versus h with different a1 for b1 ¼ 2 and k1 ¼ 0:8.
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located inside matrix. When a1 < 1 (soft inhomogeneity), the normalized force Fxo1 is negative first, and

then becomes positive as dislocation approaches to inhomogeneity from infinity along with x-axis. There
also is a stable equilibrium position in x-axis and the image force equal to zero at that point. In spite of

a1 > 1 or a1 < 1, the value of attraction force on dislocation will be a large value when dislocation ap-
proaches to rigid line inclusion.

(2) Dislocation inside inhomogeneity

Let us define the normalized force on dislocation as Fxo2 ¼ ð2pR=Cð1Þ
44 b

2
z ÞFx. Assuming inhomogeneity

material is PZT-5H piezoelectric ceramics with the electro-elastic properties:
M1 ¼ 3:53� 1010 N=m2 17 C=m2

17 C=m2 1:51� 10�8 C=Vm

� �
and dielectric modulus dð1Þ
11 ¼ dð2Þ

11 . Let us introduce a2 ¼ Cð2Þ
44 =C

ð1Þ
44 , b2 ¼ eð2Þ15 =e

ð1Þ
15 and k2 ¼ x0=R. The nor-

malized force Fxo2 on dislocation versus h is depicted in Fig. 7 with different b2 for a2 ¼ 1 and k2 ¼ 0:8. It is
seen that image force is equal to zero in homogeneous piezoelectric material as h ¼ 0 and b2 ¼ 1. Fxo2 is

always negative as b1 > 1, for which the piezoelectric matrix repel dislocation located inside inhomogeneity.

For b1 < 1, Fxo1 is positive first, and then becomes negative. The image force will increase with the increase
Fig. 7. Normalized force Fxo2 versus h with different b2 for a2 ¼ 1 and k2 ¼ 0:8.

Fig. 8. Normalized force Fxo2 versus h with different a2 for b2 ¼ 2 and k2 ¼ 0:8.
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of rigid line angle h which indicates interfacial rigid line repel screw dislocation located inside inhomo-

geneity. The variation of the normalized force Fxo2 acting on dislocation with rigid line angle h is plotted in

Fig. 8 with different a2 for b2 ¼ 2 and k2 ¼ 0:8. Noticeable, Fxo2 is negative as h ¼ 0 and a2 ¼ 0:1, 0.8 which

shows soft matrix can repel dislocation in piezoelectric materials. To our knowledge, soft matrix will attract
dislocation inside inhomogeneity all along in non-piezoelectric composites. It is also shown that Fxo2 will

decrease with the increase of rigid line radian for which rigid line always repel dislocation. In Fig. 9, we

illustrate variation of normalized force Fxo2 versus k2 with different value of b2 for a2 ¼ 1 and 2h ¼ 20�. It is
found that Fxo2 < 0 due to the presence of interfacial rigid line inclusion when dislocation is located at

origin. Further, It is seen that the normalized force Fxo2 is always negative as b2 > 1. For b2 < 1, matrix and

rigid line inclusion attract dislocation first, and then repel it. In spite of getting any value of b2, the

magnitude of repulsion force on dislocation will be a negative large value when dislocation approaches to

rigid line inclusion (k2 ! 1) from origin alongwith x-axis. The variation of the normalized force Fxo2 with k2

is plotted in Fig. 10 with different a2 for 2h ¼ 20� and b2 ¼ 1. It is shown that Fxo2 is always negative when
a2 > 1 (hard matrix), for which hard matrix and rigid line inclusion always repel dislocation located inside

inhomogeneity. When a2 < 1 (soft matrix), the normalized force Fxo2 will increase first, and then decrease as

dislocation approaches to rigid line inclusion from origin along with x-axis. In spite of a2 > 1 or a2 < 1, the

value of attraction force on dislocation will be a negative large value when dislocation approaches to rigid
Fig. 9. Normalized force Fxo2 versus k2 with different b2 for a2 ¼ 1 and h ¼ 10�.

Fig. 10. Normalized force Fxo2 versus k2 with different a2 for b2 ¼ 1 and h ¼ 10�.
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line inclusion. In Fig. 9 or Fig. 10, when b2 < 1 or a2 < 1, there may be two stable equilibrium positions or

no equilibrium point along x-axis which depend on combinations of shear modulus ratio a2, piezoelectric

modulus ratio b2 and rigid line angle h.
7. Conclusions

Using Muskhelishvili�s complex variable method, the closed form complex potentials are obtained for a

piezoelectric screw dislocation located either inside matrix or inhomogeneity interacting with interfacial

rigid line inclusions in this paper. Analytical expressions of image force on dislocation are also given. In
Section 6, influence of rigid line geometrical dimension and materials elastic constants on dislocation force

is discussed in graph. The results indicate interfacial rigid line play an important role in the interaction

dislocation force. The obtained explicit solutions of Eqs. (43), (44) and (50), (51) can be used as Green�s
functions to solve the problem of interaction between interfacial rigid lines and arbitrary shape crack inside

matrix or inhomogeneity under anti-plane mechanical and in-plane electric loadings at infinite.
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