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Abstract

The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomo-
geneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezo-
electric materials is dealt with in the framework of linear elastic theory. Using Riemann-Schwarz’s symmetry principle
integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this
paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are
derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and
electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using
the generalized Peach—Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity
can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the
influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches
extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to this intrinsic coupling behavior, piezoelectric materials are used widely in modern technology
such as high power sonar transducers, electro-mechanical actuator, piezoelectric power supplies and micro-
positioner. These devices are designed to work under combined electro-mechanical loads. The presence of
various defects, such as dislocations, cracks and inclusions, can greatly influence their characteristics and
coupled behavior. Therefore, it is of vital importance to study the electro-elastic fields as a result of the
presence of defects and inhomogeneities in these quasi-brittle solids.

Piezoelectric composites have become an important branch of modern engineering materials with
fast development of the intelligent materials and structures. A number of contributions had been con-
ducted on electro-elastic coupling characteristics of piezoelectric composite materials. Pak (1992) studied
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the anti-plane problem of a piezoelectric circular inclusion. Meggiud and Zhong (1997) provided a general
solution for the elliptical inhomogeneity problem in piezoelectric material under anti-plane shear and in-
plane electric field. Kattis et al. (1998) investigated the electro-elastic interaction effects of a piezoelectric
screw dislocation with circular inclusion in piezoelectric material. Meguid and Deng (1998) and Deng and
Meguid (1999) considered the interaction between the piezoelectric elliptical inhomogeneity and a screw
dislocation located inside inhomogeneity and outside inhomogeneity respectively under anti-plane shear
and in-plane electric field. Recently, Huang and Kuang (2001) evaluated the generalized electro-mechanical
force when dislocation located inside, outside and on the interface of elliptical inhomogeneity in a infinite
piezoelectric media.

Above investigations and analysis all based on perfect interface between matrix and inclusion. Interfacial
defects, typically interfacial cracks and interfacial rigid lines, can be produced inevitably in manufacturing
and using of composite materials. Therefore, investigation on interaction of piezoelectric dislocation and
inhomogeneity containing interfacial defects has important practical values which cannot only help to
understand coupled electro-elastic characteristics of piezoelectric materials, but also offer scientific basis for
the establishment of intelligent composites interface fracture criterion. The interaction of a screw dislo-
cation and a thin film-covered crack in order to investigate the effects of a passive film on stress-corrosion
cracking had been studied by Zhang and Qian (1996). Zhong and Meggiud (1997) studied the partially
debonded circular inhomogeneity problem in piezoelectric materials under anti-plane shear and in-plane
electric field. Lee et al. (2000) obtained the general solutions for a piezoelectric screw dislocation interacting
with a semi-infinite crack. Detailed review of recent developments in fracture mechanics of piezoelectric
materials can be found in the review paper by Zhang et al. (2001).

In this article, the electro-elastic interaction between a piezoelectric screw dislocation and circular in-
homogeneity interfacial rigid lines under combined longitudinal shear and in-plane electric field is dealt
with. Using Riemann—Schwarz’s symmetry principle (Toya, 1974) integrated with the analysis singularity of
complex functions (Liu, 1991), we present the general elastic solution of this problem and the closed form
solution for interface containing a single rigid line inclusion. The holomorphic expressions of electro-elastic
fields in matrix and inhomogeneity regions and image force are derived explicitly, and the influence of rigid
line inclusion upon force acting on dislocation is discussed and shown graphically. Results presented in this
paper contain the previous known solutions as special cases.

2. Basic formulation and problem statement

Assuming that the transversely isotropic piezoelectric media which has been poled along the z-direction
with an isotropic xoy-plane, is subjected to remote longitudinal shear and in-plane electric field, then only
coupled out-of-plane displacement and in-plane electric field need be considered so that there are only non-
trivial displacement w, strains y,, and ,,, stresses .. and 1., electric potential ¢, electrical field components
E, and E,, electric displacement components D, and D, in the Cartesian coordinates. All components are
only functions of variables of x and y. The mechanical and electric coupled constitutive equations (Tiersten
(1969)) can be expressed as:

e = Cug teny =Cug teny, (1)
ow 0 ow d
Di=esg =g Dy=easg—dug; 2)

where Cy, is the longitudinal shear modulus at a constant electric field, e;s is the piezoelectric modulus, d; is
the dielectric modulus at a constant stress field.
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The equilibrium equation and charge equation can be reduced to the harmonic equations
Viw=0 V=0 (3)

where V? = 02/0x? + 0% /0y? is Laplace operator.
Referring to the work by Jiang et al. (2001), we introduce the vector of generalized displacement

U= { :; } Substituting it into Eq. (3), we obtain
VU =0 4)

We introduce the vectors of generalized stress and strain.

=~ (5} =-{3)
v {5} ve{)

By adopting the above notations, Egs. (1) and (2) can be unified into

X =MY, I, =MY, (7)
where
Cu es
M =
{ e;s  —di }

can be called the electro-elasticity modulus matrix.
Eq. (4) shows that the general solution of the generalized displacement vector U can be expressed by a
generalized analytical function vector f(z), where z = x + iy is the complex variable.

U = Ref(2) (8)

where Re denotes the real part, and

fu(2) }
f(z) = 9
@={£0 ©)
fw(z) and f,(z) are conventional analytical functions. By using the complex potential vector, the constitu-
tive Eq. (7) can be expressed as

X, —iX, = MF(z2) (10)

where F(z) = f'(z) and the superscript prime denotes derivative with respect to z. In term of polar coor-
dinates » and p, Eq. (10) can be expressed as

X, —iX, = e”MF(z) (11)

The problem to consider is as follows. Referring to Fig. 1, let piezoelectric medium I with electro-
elasticity modulus M; occupy the region S, interior to the circle of radius R, while piezoelectric medium II
with electro-elasticity modulus M, occupy region S—, exterior the circle. A piezoelectric screw dislocation
b= {b,, bq,}T is located at arbitrary point z, inside region S~ (or region S*). Longitudinal shear stresses 72
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Fig. 1. Interaction of piezoelectric screw dislocation and circular interfacial rigid lines model.

and 77 as well as electric displacements D® and D} are applied at infinite. A series of electrically con-
ducting interfacial curvilinear rigid lines lie along a part L of the interface between two materials, where L is
a union of rigid line segments L; with the end points a; and b; (j =1,2,...,n). L' is the remainder of the
interface which the inhomogeneity and the matrix are perfectly bonded.

Let the center of circle be placed at the origin of complex plane z = x 4 iy and ¢ = Re”” be those points of
z on |z| = R. The boundary conditions of generalized displacements and radial generalized stresses for the
above problem can be expressed as follows:

Uf(z)_Uz(t)_{Z;} tel; j=12,...,n) (12)

where J; is constant denoting a small anti-plane displacement of any rigid line /;, ¢, is the electric potential
on /;.

L) =X,(t) tel (13)
Uf()=U,(t) tel (14)
After taking the derivatives with respect to p, the addition and subtraction of Eq. (12) yield
U'()+U, () =0 tel (15)
U()-U,(t)=0 teL (16)

where the subscripts 1 and 2 denote the quantities defined in the region S and S—, with the superscripts +
and — used to denoting the boundary values of the physical quantities as they approached from S and S,
respectively.

In addition to determine the unknown coefficients in the solution for such a problem, the equilibrium
condition of each rigid line must be considered. Assuming that rigid lines are external traction and charge
free, we have

bi dr b dt ,
/E:’l(t)T—/ X()—=0 j=12,....n (17)

' 'j
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3. General solution of problem
3.1. A piezoelectric screw dislocation in matrix

3.1.1. General solution
Assuming that a piezoelectric screw dislocation is located in region S~ and considering Eq. (8), it is easy
to obtain:

U, = Ref,(z) (18)

Referring to the work by Pak (1990) and Jiang et al. (2001), the generalized analytical function vector
F,(z) in region S~ under considerations can be written as

1 1
= — r -

FQ(Z) 27‘[in*2()+ +F20(Z) zeS (19)
where Fy(z) is holomorphic in region S~, b = { 11732 } is piezoelectric screw dislocation vector, I' is deter-
mined from the far-field loads. ¢

oo oo | =i

r=M"(Z _lzy)le[D;o—iDy;c} (20)

where
2 2

w=| % E%]

ejs  —dj

superscript —1 denotes the inverse of a matrix.
Applying Riemann-Schwarz’s symmetry principle and noting 7z = R on |z| = R, we extend the definition
of the holomorphic function F,(z) into region S* lying along L by substitution

R_ (R?
FQ(Z) Z—2F2<?> ZGS+ (21)
F,(z) is holomorphic in region S*, except at the points z = R?/z, and z = 0 where it is singular. Using Egs.
(19) and (21), F»(z) can be expressed as

1 1 11 R
Fy(2) b( + ) + T+ 5T+ () (22)

- 277'51 z—zy z—2ZzF B E
where z* = R?/z, and Fy(z) is holomorphic over the entire plane cut along with L'.
F,(z) is holomorphic in region S* and has form
Fi(z) = D + Fy(2) (23)

where D is a constant vector to be determined and Fjo(z) = O(1/z) near z = 0.
Similarly, extending function F;(z) from S* to S™, for large value of |z|, we obtain

R 1
z z-
From Egs. (14) and (16), it is seen that
Ur()=U5@t) telL+L (25)

at every point of entire circular boundary. After taking derivatives with respect to 8, and considering Eq. (8),
the generalized displacement continuity condition (25) is written as
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Fi(t) + F(0)]" = [Fi(t) + F2(0)] tel+L (26)

Noting Egs. (19), (22), (23) and (24) and according to the generalized Liouville’s theorem, Eq. (26)
leads to

Fi(z) + Fa2) = ﬁbG(z) + (1“ + f—jf) (27)
with

1 1 1
G(z) = + - — =
z—zy z—2z* z

Substituting Eq. (11) into Eq. (13), we obtain
M, [Fy () + F (1)] = Mo[F; (1) + Fy (1)) tel (28)
Inserting Eq. (27) into Eq. (28), we have

F;r(l) + F;(l) = N]G(l) + 2(M1 +M2)7]M2 (F +I:—22f) tel (29)

with Ny = (1/mi)(M; + M)~ Myb.
According to Muskhelishvili (1975), the general solution of Eq. (29) can be written as

Xo(2) / h()
Fi(z) = - dt + X, (2)P,(z 30
1( ) i | XJ([)([—Z) 0( ) ( ) ( )
where h(¢) = N, G(1) + 2(M, + M,) "' M, (F + If—;f)
Z’; C(vW)Znij
P = | o
n (@) _n—j
Zj:l C_/ z (31)
Xo(z) = [J = - a) Pz —b) "
=1
Xo(z) is a single-valued branch in the plane cut along with L’ and for which
|l‘im Z'Xo(z) =1 (32)
After evaluating the Cauchy integral in Eq. (30), we obtain
1 1
Fi(e) = e { Pu(2) ~ 3 10e) + 2+ a2+ he 2] + 34 (33)

where hy(z), ho(2), h, (z) and h,. (z) represent the principal parts at the points z =0,z = 00,z = zp and z = z*
of function h(z)/Xy(z), respectively.

The remaining integration constants in Eq. (30) are determined from the equilibrium conditions (17) of
the rigid lines. Noting Eq. (11), we obtain 2n closed contour integrals

/[M]F](Z)—FMze(Z)}dZ:O ]:1,2,,7[ (34)

where A, is a closed contour encircling each rigid line L; with the poles (z = 0,z,z*) outside contour.
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Considering Eq. (27), Eq. (34) can be expressed as follows
1 R
/ |:(M1—Mz)Fl(Z)+21M2bG(Z)+M2<F+2r):|dZ:0 j:1,2,...,l’l (35)
A T z
This is a system of 2n linear algebraic equations solving for the unknown constants. Substituting Eq. (33)
into Eq. (35), the remaining integration constants can be determined. Once F,(z) is available, F,(z) will be
simply obtained from Eq. (27).

3.1.2. Typical solution

As a typical case, we consider the problem of interface containing single rigid line. Further more, let us
consider the case of the rigid line symmetrically placed with respected to the x-axis which ends are located at
a = Re ¥ and b = Re!” on |z| = R as shown in Fig. 2.

In this case, P,(z) and X;(z) have form

Pi(z)=[c @] (36)

Xo(z) = (z—a) Pz =) (37)

Expanding 1/X,(z) into Laurent series in the vicinity of z = 0 and |z| = oo, and noting X,(0) = (1/R), we
obtain

ho(z) = —§N1 +2(M2+M1)_1M2(—R?ZCOSHF—&-]ZLSF) (38)
hy(z) = N, + 2(M, + M;)" ' M;(Tz — TR cos 0) (39)
by (2) = N VB =) (40)
ho () = N, VT =@ = b) @41)

z—z*

y
o o0e e o o
[ !
| b | !
— R E s~ 20:X0+i)’0: ®
-— b i -
1 ! 7.
D ® ! st (] OIS
i I og ! X
e, I ) ©
— o
—®! n !
— ;
@ b
® ® ® & ®

Fig. 2. Interface containing single rigid line.
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Substituting Egs. (38)-(41) into Eq. (33), and applying the residue theorem, the unknown coefficient can
be calculated:
0
:b} )

Substituting Eqs. (38)-(41) into Eq. (33), and considering Eq. (42), the general solution of F;(z) can be
written as

C§W)
Ci(ﬂ)

RZ_ RZ _ R?_
Fi(z) = (M, + M) "' M, (r +t—2r> + (M +M1)1M2(— cos 0T — =T — I'z + I'Rcos 0)
z Z

1 1 1 1 1 1 1 B
Xm—i_%(Ml—’—Mz) Mzb(Z_ZO+Z_Z*_;>_%(Ml-ﬁ-Mz) M>b
Va-a@-b JVE-aE-b R\ 1
X( zZ—2 + z—2z* Z+1> (Z—a)(z—b) (43)

The function F,(z) can be found by substituting Eq. (33) into Eq. (27), it is

_ R?_ _ R? _ R_
Fo(z) = (M + M) ™' M, (r—t—2r> — (M, 4+ M) le(—COSBF——ZF—Fz—FFRCOSO)
z z

1 _ 1 1 1 1 _
ﬂ(1\41+1\42) 1Mlb( + ——> +5— (M + M) "' Msb

1
Ve—aG-b) 2

z—2zy z—2z" z 27l
Va—a@-b  JE-aEF -5 R !
X( mm o7 _”> eI “

The solution to the problem of corresponding homogeneous material containing single circular-arc rigid
line is the special case as M; = M,, which is

2 2 3
F(z):1 FJr]if —1 R—COS@F—R—F—F2+FRCOSG ;
2 2 2\ z z2 (z—a)(z—b)
Pl L L (VE ek b VE—aE-b) R
4ni \z—zy z—2z¢ z 4mi z— 2z z—z* z
VO S (45)
(z—a)(z—D)

This is a new solution.

Assuming 0 = 0 and I" = 0, namely, radian of interfacial rigid line and generalized stresses at infinite are
equal to zero; we obtain the solutions on interaction between a piezoelectric screw dislocation and circular
inhomogeneity.

1 _ 1
Fi(2) = — (M + M) lebZ_ZO (46)
F()—ib ! +L(M + M) (M — My)b 1 (47)
2 S 2m z—zy 2mi ! : ! . z—2z% z

which are identical to the results in Kattis et al. (1998) and Liu et al. (2000).
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3.2. A piezoelectric screw dislocation inside the inhomogeneity

Assuming a screw dislocation is located inside inhomogeneity and vanishes at infinite, by the application
of analysis of singularity of F(z), the complex potential in inhomogeneity region can be expressed as
1

F :—.b
1) 2m z — zg

—|—F1()(Z) zZ e S+ (48)

where Fy(z) is a holomorphic complex function in region S*.
The complex potential outside inhomogeneity is holomorpic and takes the following form for large value
of |z|.

11 1
Fo(z) ==—b-+0O|( = es 49
2(2) = 2ni z (zz) z (49)
Assuming interface containing single rigid line inclusion, furthermore, let the center of arc L liec on the
positive x-axis and the central angle subtended by arc L be 20, using the same method introducing in Section
3.1, the complex potentials inside inhomogeneity and matrix can be expressed as follows:

1 1 1 1 1 _
Fi(z) = Ml + M)~ M2b< + ——) + 5= (M; + M) "' Mib

z—zy z—2z% z 2mi
@—-a)z0—-b) /(& —a)(z*—b)) 1 1 1
n — (M + M2) ' Msb
( zZ—2 z—z ViEz—a)(z—>b a
R 1
(5 == B0
1 1 1 1 1 1 1
Fz(z)zz—ni(MrFMz) Mlb(z—zo+z—z*_z) _2_ni(M1+M2) Mb
V(zo—a)(zo—b)  +/(z" —a)(z- —b) 1 1 1
X ( p— + P ) TETCED A - (M, + My)” Myb

g <§‘ 1) m (s1)

Assuming the radian of rigid line 0 is equal to zero and the piezoelectric coupling effect is absent, Egs.
(45) and (46) reduce to

Gib. 1 Gi(Gy—G)b, 1
2ni z—zy  27mi(Gi 4+ Gy) z—2z*

F() = (52)

Gy(Gy—G)b, 1 GG, 1
F(z) = -
2(2) 27'[1(G1 + G2> z + TCi(Gl + Gz) Z—2Z (53)

Egs. (52) and (53) agree with the results of Smith (1968).

4. Stresses and electric displacements

Substituting Eqgs. (43) and (44) into Eq. (10) respectively, stress fields and electric displacement fields in
inhomogeneity and matrix can be evaluated.
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. _ R*_ _ R? — R
le—lEyIZMl(M1+M2) IMZ(F+—2F>+M1(M2+M1) 1M2<—COS0F——2r—rZ+FRCOSH>
V4 z z

1 1 -1 1 1 1 1 B
Xm_'_%MI(Ml‘FMZ) Mzb(z_zo—i-z_z*—;)—%MI(MH—MQ) Mob
Va-a@-b JE-aE -5 R _\ 1
X ( z—12 + Z— 2 Z+1> o) (54)

. _ R _ _ R? _ R
Yo — i, = My(My + M) ' M, <r+—2r> — Ms(M;, + M) 1M2<—0059F——2F—F2+FR0050>
i z z z

X m+ﬁMz(M1 +M2)—1M1b<2_120 +z—lz* —é) +%M2(M1 +M2)_1Mzb
Ve aw b JE-aE -5 R\ 1
X ( z—1z + 7z Z+1> ey (55)

When the dislocation is located inside the inhomogeneity, substituting Egs. (50) and (51) into Eq. (10), we
have

. ! . 1 11
le _IEyl = —-MI(MI +M2) 1M2b< + * __)
2mi z—z20 z—z zZ

+%M1(M1 +Mz>lMlb<V(ZO —a)z-b) VE-aE - b)> I

2 z— 2 z—2z*

| (R 1
+%M1(M1+M2) M2b<Z 1) (z—a)(z—b) (6)

. 1 _ 1 1 1
Exz—lzyzzﬁMz(Ml +M2) 1M1b< + ——)

z—zy z—2z" z

~ Lo, +M2)1M1b<\/(zo —d)@=b)  VE—aE - b)) ( 1

27 z—2zy z—z* z—a)(z—b)
1 ] R 1
—%Mz(M1 + M) Mzb(;— l>m (57)

5. Image force
5.1. Perturbation stress and electric displacement at the dislocation
The perturbation stress and electric displacement components at the dislocation are obtained by sub-

tracting those attribution to the dislocation in the corresponding infinite homogeneous medium from
Eq. (55) or (56), then taking the limit for z approaches to z.
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(1) Dislocation inside matrix

. _ R _ _ R? _ R
X0 —iE = My(M, + M) ' M, <r+2r> — My (M + My) 1M2<c059I‘2I‘Fz+I‘Rcos€)
z zZ

'y
Zp

1 1 1 < 1 1 >
x +—M,(M, + M) Mb ——
G @G b 2 2 (M, 2) M,

1 _
+— Ms(M; + Ms) 1M2b< -
27l Zo—Z Z

1 . 1 1
— g Ma(My + M) leb( + ) (58)

(2) Dislocation inside inhomogeneity

. 1 - 1 1 1 _ * _ «_ b
I — i) = 5 My (M) + My) ™' Mo ——— ) + 5= M (M, + M) "' Mib < a)(i )
Y 2m1 Zo —z¥ 2o 2mi Zo — Z
1 1 R
X +—M1(M1 +M2)1M2b<—— 1)
(Z() — a) (Z() — b) 2m Z0
x ! 1 M, (M, +M)1Mb< ! + ! ) (59)
G—a)z—b) 4mi T TU\z—a b

5.2. Image force
Image force (Hirth and Lothe, 1982) on the dislocation is a significant physical quantum for under-
standing interacting mechanism in studying the interaction effects of piezoelectric dislocation and inhomo-

geneity. The image force can be obtained by using the generalized Peach—Keohler formula by Pak (1990)
as follow

Fo—iF, = ib" (20, — X)) (k=1.2) (60)
Substituting Eq. (58) or (59) into Eq. (60), image force components F, and F, can be determined.

(1) Dislocation inside matrix at arbitrary point z.

L i R_\ . _
F, —iF, = ib"My (M, + My) ™' M, (r + Z—2r> — "My (My + M) M,
0

R? _ R 1 - 1
X <— cosHF——zr— Fz+FRcos€)> +bTM2(M1 + M) 1M,b—
z z (Zo — a) (Z() — b) 2n
1 1 1 *— *—b) R
x ( __> +bTM2(M1+M2)_1M2b—< (Z a)(z )__+1>
zo—z" Zzo 21 zo — z* 2
x ! b" M, (M, + M,)”' Myb : ( L1 > (61)
o — )z — b) AT R \z—a 20— b
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(2) Dislocation inside inhomogeneity at arbitrary point z.

* *717
Ec—iﬂ=bTM1(M1+Mz)1Mzbl< 1 —1>+bTM1(M1+Mz)1M1b21< = —a) )>

2n \zg —z* zg n zo — z*
1 1 /R
X +bTM1(M1 +M2)1M2b( 1>
(zo —a)(zo — b) 27 \ 2o
x ! b M, (M —&—M)*lel ( 1 ) (62)
(2o —a)(zo — b) AR T i \zo—a Tz — b

When 0 =0 and I' = 0, the corresponding image force between piezoelectric screw dislocation and
circular elastic inhomogeneity is obtained from Eq. (61) which coincides with the result of Liu et al. (2000).

When dislocation lies on x-axis and generalized loads vanish at infinite, zy = xy, I’ = 0, expressions (61)
and (62) reduce to

(1) Dislocation inside matrix

1 X 1
Fo= b MMy + M) Mib— [ =2 — 2\ b My (M, + My) ' Mob
Y= b My(M, + M) len (x%—RZ x0>+ »(My + M) M,
R2 _ R2 —
R )R —wh) R ! — b My (M, + M) " Mob
2n x5 —R Xo (xo —a)(xo — b)
1 1 1
Xﬁ(xo—ﬁxo—b) (63)
. (64)

(2) Dislocation inside inhomogeneity

1 1 1 R2 — R2 — xob
Fo = b M, (M, + M) Mab—— (xx_o )—&-bTMl(Ml—&—Mz)lMlbﬂ(\/( xoa)(R? — xo ))

2n %—Rz_% x; — R?
1 1 /R 1
X +bTM1(M1 +M2)71M2b— (—— 1>
(xo — a)(xo — b) 21 \ xo (xo —a)(xo — b)
1 1 1
— b M, (M; + M) Mb—
biM (My + M) 1b47t xo—a+xo—b (65)

F,=0 (66)

Above Egs. (63)—-(66) indicate image force component F, equals to zero and the dislocation only moves
along x-axis when dislocation lies on x-axis.

6. Numerical analysis and discussion

From Egs. (61) and (62), we can discuss the influence of all parameters upon image force. For the
convenience of comparing with previous known solutions, we analyze the special case when dislocation lies
on x-axis in the absence of remote generalized loads. Assuming the piezoelectric screw dislocation vector
(Lee et al., 2000)
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and using Eqgs. (63) and (65), the influence of circular interfacial crack upon image force is discussed as
follows.

(1) Dislocation in matrix
Let us define the normalized force on dislocation as F,,; = (2nR/C\2b?)F,. Assuming matrix material is
PZT-5H piezoelectric ceramics with the electro-elastic properties:

Ao — | 3:53 % 101 N/m? 17 C/m?
i 17 C/m? 1.51 x 108 C/Vm

and dielectric modulus dfi) = dl(?.

Let us introduce o; = C} /C, B, = e§‘5> /e%) and 4; = R/xo. The normalized force F,; on dislocation
versus 0 is depicted in Fig. 3 with different 8, for o; = 1 and 4, = 0.8. It is seen that image force is equal to
zero in homogeneous piezoelectric material as 0 = 0 and §, = 1. F, is always positive as 5, > 1, for which
the piezoelectric inhomogeneity repel dislocation located inside matrix. For 8, < 1, F,, is negative first, and
then becomes positive. The image force will increase with the increase of rigid line angle # which indicates
interfacial rigid line repel piezoelectric screw dislocation. The variation of the normalized force F,; acting
on dislocation with radian 0 is plotted in Fig. 4 with different o for §, = 2 and 4, = 0.8. Noticeable, F}, is
positive as § = 0 and «; = 0.1, 0.8 which shows soft inhomogeneity can repel dislocation in piezoelectric
materials due to their different piezoelectric constants ratio. To our knowledge, soft inhomogeneity will
attract dislocation inside matrix all along in non-piezoelectric composites. It is also shown that F,; will
increase with the increase of rigid line radian for which rigid line always repel dislocation. In Fig. 5, we
illustrate variation of normalized force F},; versus 4; with different value of 5, for oy = 1 and 20 = 20°. It is
seen that the normalized force F,, is always positive as ;, > 1. For f; < 1, circular piezoelectric inho-
mogeneity and rigid line inclusion attract dislocation first, and then repel it. There is a stable equilibrium
position in x-axis and the image force equal to zero at that point. In spite of getting any value of f3,, the
magnitude of repulsion force on dislocation will be a large value when dislocation approaches to inho-
mogeneity (4; — 1) from infinity along with x-axis. The variation of the normalized force F,,; with 4, is
plotted in Fig. 6 with different o for 20 = 20° and f5; = 1. It is seen that F,; is always positive when o; > 1
(hard inhomogeneity), for which hard inhomogeneity and rigid line inclusion always repel dislocation
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Fig. 3. Normalized force F,,, versus 0 with different f5, for «; =1 and 4, = 0.8.
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Fig. 4. Normalized force F,,; versus 0 with different o for f; =2 and 4; = 0.8.
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Fig. 5. Normalized force F,,, versus 4, with different §, for oy = 1 and 6 = 10°.
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Fig. 6. Normalized force F,,; versus 4, with different o; for f;, =1 and 0 = 10°.
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located inside matrix. When oy < 1 (soft inhomogeneity), the normalized force F,; is negative first, and
then becomes positive as dislocation approaches to inhomogeneity from infinity along with x-axis. There
also is a stable equilibrium position in x-axis and the image force equal to zero at that point. In spite of
oy > 1 or oy < 1, the value of attraction force on dislocation will be a large value when dislocation ap-
proaches to rigid line inclusion.
(2) Dislocation inside inhomogeneity

Let us define the normalized force on dislocation as F,, = (2aR/ Cﬂ)bf)Fx. Assuming inhomogeneity
material is PZT-5H piezoelectric ceramics with the electro-elastic properties:

A= | 353X 10" N/m? 17 C/m?
b 17 C/m? 1.51 x 10 C/Vm
and dielectric modulus d\] = d'?. Let us introduce o, = C{/C\), B, = €7 /el and 4, = xo/R. The nor-

malized force F;,, on dislocation versus 6 is depicted in Fig. 7 with different f8, for o, = 1 and 4, = 0.8. It is
seen that image force is equal to zero in homogeneous piezoelectric material as 0 =0 and 5, = 1. F,,, is
always negative as f#; > 1, for which the piezoelectric matrix repel dislocation located inside inhomogeneity.
For B, < 1, F,, is positive first, and then becomes negative. The image force will increase with the increase

Froz 1 1 B
] —o—fB,=1
0-+4 B,=0.1
14
2
-3
44
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0 5 10 15 20 25 30 35 40 45
6

Fig. 7. Normalized force F,,, versus 0 with different f, for «; = 1 and 4, = 0.8.
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Fig. 8. Normalized force F,,, versus ¢ with different o, for 5, =2 and 4, = 0.8.
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of rigid line angle 6 which indicates interfacial rigid line repel screw dislocation located inside inhomo-
geneity. The variation of the normalized force F,,, acting on dislocation with rigid line angle 0 is plotted in
Fig. 8 with different o, for §, = 2 and 1, = 0.8. Noticeable, F,,, is negative as § = 0 and o, = 0.1, 0.8 which
shows soft matrix can repel dislocation in piezoelectric materials. To our knowledge, soft matrix will attract
dislocation inside inhomogeneity all along in non-piezoelectric composites. It is also shown that £, will
decrease with the increase of rigid line radian for which rigid line always repel dislocation. In Fig. 9, we
illustrate variation of normalized force F,, versus 1, with different value of 3, for o, = 1 and 20 = 20°. It is
found that F,,, < 0 due to the presence of interfacial rigid line inclusion when dislocation is located at
origin. Further, It is seen that the normalized force F,,, is always negative as f§, > 1. For f, < 1, matrix and
rigid line inclusion attract dislocation first, and then repel it. In spite of getting any value of f3,, the
magnitude of repulsion force on dislocation will be a negative large value when dislocation approaches to
rigid line inclusion (4, — 1) from origin alongwith x-axis. The variation of the normalized force F;,, with 4,
is plotted in Fig. 10 with different o, for 260 = 20° and 3, = 1. It is shown that F,, is always negative when
o > 1 (hard matrix), for which hard matrix and rigid line inclusion always repel dislocation located inside
inhomogeneity. When o, < 1 (soft matrix), the normalized force F;,, will increase first, and then decrease as
dislocation approaches to rigid line inclusion from origin along with x-axis. In spite of o, > 1 or o, < 1, the
value of attraction force on dislocation will be a negative large value when dislocation approaches to rigid

F ., 02 —ap-3
x02 | e [3:= 1
0.0+ $=0.1

02
_014_.
-0.6-
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Fig. 9. Normalized force F,,, versus A, with different 8, for o, = 1 and 6 = 10°.
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Fig. 10. Normalized force F,,, versus 4, with different o, for , = 1 and 0 = 10°.
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line inclusion. In Fig. 9 or Fig. 10, when 5, < 1 or o, < 1, there may be two stable equilibrium positions or
no equilibrium point along x-axis which depend on combinations of shear modulus ratio oy, piezoelectric
modulus ratio f$, and rigid line angle 6.

7. Conclusions

Using Muskhelishvili’s complex variable method, the closed form complex potentials are obtained for a
piezoelectric screw dislocation located either inside matrix or inhomogeneity interacting with interfacial
rigid line inclusions in this paper. Analytical expressions of image force on dislocation are also given. In
Section 6, influence of rigid line geometrical dimension and materials elastic constants on dislocation force
is discussed in graph. The results indicate interfacial rigid line play an important role in the interaction
dislocation force. The obtained explicit solutions of Egs. (43), (44) and (50), (51) can be used as Green’s
functions to solve the problem of interaction between interfacial rigid lines and arbitrary shape crack inside
matrix or inhomogeneity under anti-plane mechanical and in-plane electric loadings at infinite.
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